
JETSWAP PROTOCOL SMART
CONTRACT CODE REVIEW
AND SECURITY ANALYSIS

REPORT

Customer​:​ JetFuel Team (https://jetfuel.finance)
Prepared on​: 23/03/2021
Platform: Binance Smart Chain
Language: Solidity
Audit Type: Extensive

audit@etherauthority.io

Table of contents

Project Files 4

Quick Stats 5

Executive Summary 6

Code Quality 6

Documentation 7

Use of Dependencies 7

AS-IS overview 8

Severity Definitions 14

Audit Findings 14

Conclusion 19

Our Methodology 20

Disclaimers 22

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO PUBLIC AFTER ISSUES ARE RESOLVED.

Project files

Name Smart Contract Code Review and Security
Analysis Report for JETSWAP

Platform Binance Smart Chain / Solidity

File 1 MasterChef.sol

File 1 MD5 hash 67A621040EA4CD5B851BC8E797D87F8A

File 1 Testnet
Contract URL

https://testnet.bscscan.com/address/0xc893573a
8528e3c552912eeb934c8e5e7894462a#code

File 2 Multicall.sol

File 2 MD5 hash C5C1107C4FC647B326284AF5FD0B00EE

File 2 Testnet
Contract URL

https://testnet.bscscan.com/address/0xa15fa9d6
7ed47b35a9e478007d943db1c1286db6#code

File 3 swapV2Factory.sol

File 3 MD5 hash A6440A04AC2D604CC79A4C62A8C89120

File 3 Testnet
Contract URL

https://testnet.bscscan.com/address/0x5659b81
b7ca5233bd999073e49fc417e05dc2363#code

File 4 swapV2Router02.sol

File 4 MD5 hash 1140683976AAD1D9A7796FC38957AF94

File 4 Testnet
Contract URL

https://testnet.bscscan.com/address/0x27f08ca6f
f0d9891a66e4ebc3ce9d46a1873db3a#code

File 5 WingsToken.sol

File 5 MD5 hash EBCE5069F77A8D0F398133B03F5CD5B8

File 5 Testnet
Contract URL

https://testnet.bscscan.com/address/0x34853a9f
7f63d8685b7fe32469b5bdb55c212d20#code

https://testnet.bscscan.com/address/0xc893573a8528e3c552912eeb934c8e5e7894462a#code
https://testnet.bscscan.com/address/0xc893573a8528e3c552912eeb934c8e5e7894462a#code
https://testnet.bscscan.com/address/0xa15fa9d67ed47b35a9e478007d943db1c1286db6#code
https://testnet.bscscan.com/address/0xa15fa9d67ed47b35a9e478007d943db1c1286db6#code
https://testnet.bscscan.com/address/0x5659b81b7ca5233bd999073e49fc417e05dc2363#code
https://testnet.bscscan.com/address/0x5659b81b7ca5233bd999073e49fc417e05dc2363#code
https://testnet.bscscan.com/address/0x27f08ca6ff0d9891a66e4ebc3ce9d46a1873db3a#code
https://testnet.bscscan.com/address/0x27f08ca6ff0d9891a66e4ebc3ce9d46a1873db3a#code
https://testnet.bscscan.com/address/0x34853a9f7f63d8685b7fe32469b5bdb55c212d20#code
https://testnet.bscscan.com/address/0x34853a9f7f63d8685b7fe32469b5bdb55c212d20#code

Quick Stats:

Main
Category

Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Moderated

Integer overflow/underflow Passed
Function input parameters lack of check Moderated
Function input parameters check bypass Passed

Function access control lacks
management

Passed

Critical operation lacks event log Moderated
Human/contract checks bypass Passed
Random number generation/use

vulnerability
N/A

Fallback function misuse Passed
Race condition Passed

Logical vulnerability Passed
Other programming issues Passed

Code
Specification

Function visibility not explicitly declared Passed
Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Other code specification issues Passed
Gas

Optimization
Assert() misuse Passed

High consumption ‘for/while’ loop Moderated
High consumption ‘storage’ storage Passed

“Out of Gas” Attack Passed
Business Risk The maximum limit for mintage not set Moderted

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Executive Summary
According to the extensive audit assessment, Customer`s solidity smart
contract is well secured.

You are here

We used various tools like SmartDec, Mythril, Slither and Remix IDE. At the
same time this finding is based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and
applicable vulnerabilities are presented in the Audit overview section. General
overview is presented in AS-IS section and all found issues can be found in
the Audit overview section.

We found 0 high, 2 medium and 1 low and some very low level issues.

Code Quality
Jetswap protocol consists of 5 core smart contract files. These smart

contracts also contain Libraries, Smart contract inherits and Interfaces.

These are compact and well written contracts.

The libraries in the Jetswap protocol are part of its logical algorithm. A library

is a different type of smart contract that contains reusable code. Once

deployed on the blockchain (only once), it is assigned a specific address and

its properties / methods can be reused many times by other contracts in the

Jetswap protocol.

The Jetswap team has not provided scenario and unit test scripts, which

would have helped to determine the integrity of the code in an automated

way.

Overall, code parts are well commented. Commenting can provide rich

documentation for functions, return variables and more. Ethereum Natural

Language Specification Format (NatSpec) is used, which is a good thing.

Documentation

We were given Jetswap smart contracts in the form of solidity files. The

hashes of those files and their testnet links are mentioned above in the table.

As mentioned above, most code parts are well commented. so anyone can

quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the

protocol. It also provided a clear overview of the system components,

including helpful details, like the lifetime of the background script.

Use of Dependencies
As per our observation, the libraries are used in this smart contract

infrastructure that are based on well known industry standard open source

projects. And their core code blocks are written well.

Apart from libraries, Jetswap smart contracts depend on an inter-connected

set of smart contracts.

AS-IS overview

Jetswap protocol is a decentralized exchange running on Binance Smart
Chain, with other features like staking, farming, governance tokens, etc.
Following are the main components of core smart contracts.

MasterChef.sol

(1) Inherited contracts
(a) Ownable: ownership contract

(2) Usages
(a) using SafeMath for uint256
(b) using SafeBEP20 for IBEP20

(3) Structs
(a) UserInfo: Info about each user
(b) PoolInfo: Info about each pools

(4) Events
(a) event Deposit(address indexed user, uint256 indexed pid, uint256

amount);
(b) event Withdraw(address indexed user, uint256 indexed pid, uint256

amount);
(c) event EmergencyWithdraw(address indexed user, uint256 indexed pid,

uint256 amount);

(5) Functions

Sl. Function Type Observation Conclusion Score
1 constructor write Passed No Issue Passed
2 updateMultiplier write Passed No Issue Passed
3 poolLength read Passed No Issue Passed
4 add write Input

validation
missing

LP Token
must not be
added twice

Passed
with

consent
5 set write Passed No Issue Passed

6 updateStakingPool internal Infinite loop
possibility

Array length
must be
limited

Passed
with

consent
7 getMultiplier read Passed No Issue Passed
8 pendingWings read Passed No Issue Passed
9 massUpdatePools write Infinite loop

possibility
Array length

must be
limited

Passed
with

consent
11 updatePool write Passed No Issue Passed
12 deposit write Passed No Issue Passed
13 withdraw write Passed No Issue Passed
14 enterStaking write Passed No Issue Passed
15 leaveStaking write Passed No Issue Passed
16 emergencyWithdraw write Passed No Issue Passed
17 safeWingsTransfer write Passed No Issue Passed
18 dev write Passed No Issue Passed

Multicall.sol

(1) Struct
(a) Call: holds call data and target wallet

(2) Functions

Sl. Function Type Observation Conclusion Score
1 aggregate read Passed No Issue Passed
2 getEthBalance read Passed No Issue Passed
3 getBlockHash read Passed No Issue Passed
4 getLastBlockHash read Passed No Issue Passed
5 getCurrentBlockTimes

tamp
read Passed No Issue Passed

6 getCurrentBlockDifficu
lty

read Passed No Issue Passed

7 getCurrentBlockGasLi
mit

read Passed No Issue Passed

8 getCurrentBlockCoinb
ase

read Passed No Issue Passed

JetswapFactory.sol

(1) Interfaces
(a) IJetswapFactory
(b) IJetswapPair
(c) IJetswapERC20
(d) IERC20
(e) IJetswapCallee

(2) Inherits
(a) IJetswapFactory

(3) Events
(a) event PairCreated(address indexed token0, address indexed token1,

address pair, uint);

(4) Functions

Sl. Function Type Observation Conclusion Score
1 constructor write Passed No Issue Passed
2 allPairsLength read Passed No Issue Passed
3 createPair write Passed No Issue Passed
4 setFeeTo write Passed No Issue Passed
5 setFeeToSetter write Passed No Issue Passed

JetswapRouter.sol

(1) Interfaces
(a) IJetswapFactory
(b) IJetswapRouter01
(c) IJetswapRouter02
(d) IJetswapPair
(e) IERC20
(f) IWETH

(2) Inherited contracts
(a) IJetswapRouter02

(3) Usages
(a) using SafeMath for uint

(4) Functions

Sl Function Type Observation Conclusion Score
1 constructor write Passed No Issue Passed
2 _addLiquidity internal Passed No Issue Passed
3 addLiquidity write Passed No Issue Passed
4 addLiquidityETH write Passed No Issue Passed
5 removeLiquidity write Passed No Issue Passed
6 removeLiquidityETH write Passed No Issue Passed
7 removeLiquidityWithPe

rmit
write Passed No Issue Passed

8 removeLiquidityETHWi
thPermit

write Passed No Issue Passed

9 removeLiquidityETHSu
pportingFeeOnTransfer
Tokens

write Passed No Issue Passed

10 removeLiquidityETHWi
thPermitSupportingFee
OnTransferTokens

internal Passed No Issue Passed

11 _swap internal Infinite loop
possibility

Keep path
limited

Passed
with

consent
12 swapExactTokensForT

okens
write Passed No Issue Passed

13 swapTokensForExactT
okens

write Passed No Issue Passed

14 swapExactETHForTok
ens

write Passed No Issue Passed

15 swapTokensForExactE
TH

write Passed No Issue Passed

16 swapExactTokensForE
TH

write Passed No Issue Passed

17 swapETHForExactTok
ens

write Passed No Issue Passed

18 _swapSupportingFeeO
nTransferTokens

internal Infinite loop
possibility

Keep path
limited

Passed
with

consent
19 swapExactTokensForT

okensSupportingFeeO
nTransferTokens

write Passed No Issue Passed

20 swapExactETHForTok
ensSupportingFeeOnT
ransferTokens

write Passed No Issue Passed

21 swapExactTokensForE
THSupportingFeeOnTr
ansferTokens

write Passed No Issue Passed

22 quote read Passed No Issue Passed
23 getAmountOut read Passed No Issue Passed
24 getAmountIn read Passed No Issue Passed
25 getAmountsOut read Passed No Issue Passed
26 getAmountsIn read Passed No Issue Passed

WingsToken.sol

(1) Interfaces
(a) IBEP20

(2) Inherited contracts
(a) Context: Provides msg.sender and msg.value context
(b) Ownable: Ownership contract
(c) BEP20: Standard contract for BEP20

(3) Events
(a) event DelegateChanged(address indexed delegator, address indexed

fromDelegate, address indexed toDelegate);
(b) event DelegateVotesChanged(address indexed delegate, uint256

previousBalance, uint256 newBalance);

(4) Functions

Sl. Function Type Observation Conclusio
n

Score

1 mint write No max
minting set

must be
used

carefully

Passed
with

consent
2 delegates read Passed No Issue Passed
3 delegate write Passed No Issue Passed
4 delegateBySig write Passed No Issue Passed
5 getCurrentVotes read Passed No Issue Passed
6 getPriorVotes read Infinite loop

possibility
Keep array

length
limited

Passed
with

consent
7 _delegate internal Passed No Issue Passed
8 _moveDelegates internal Passed No Issue Passed
9 _writeCheckpoint internal Passed No Issue Passed

10 safe32 read Passed No Issue Passed
11 getChainId read Passed No Issue Passed

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to
exploit and can lead to tokens loss etc.
High-level vulnerabilities are difficult to exploit;

High however, they also have significant impact on smart
contract execution, e.g. public access to crucial
functions

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose
Low-level vulnerabilities are mostly related to

Low outdated, unused etc. code snippets, that can’t have
significant impact on execution

Lowest / Code Lowest-level vulnerabilities, code style violations
Style / Best and info statements can’t affect smart contract

Practice execution and can be ignored.

Audit Findings

Critical

No critical severity vulnerabilities were found.

High

No high severity vulnerabilities were found.

Medium

(1) Input validation missing in MasterChef.sol

As mentioned in the comment, the token must never be added twice. So,

there must be a condition to prevent that happening by mistake.

Resolution: we got confirmation from the Jetswap team as this will be taken

extra care as this is the owner function.

(2) Minting can be unlimited by owner in WingsToken.sol

Unlimited minting is considered a bad practice for tokenomics and hence it

should be discouraged.

Resolution: Jetswap team confirmed that this minting would be triggered by

masterChef contract only.

Low

(1) Infinite loops possibility at multiple places:

As seen in the AS-IS section, there are several places in the smart contracts,

where array.length is used directly in the loops. It is recommended to put

some kind of limits, so it does not go wild and create any scenario where it

can hit the block gas limit.

Resolution: We got confirmation from the Jetswap team that the array will be

provided as limited length. And this will be taken care of from the client side.

Very Low

(1) Ownership transfer function:

Ownable.sol smart contract has active ownership transfer. This will be

troublesome if the ownership was sent to an incorrect address by human

error.

so, it is a good practice to implement acceptOwnership style to prevent it.

Code flow similar to below:

Resolution: Jetswap team acknowledged this, as this should be taken care of

from admin side.

(2) Use the latest solidity version while contract deployment to prevent any

compiler version level bugs.

Resolution: This issue is acknowledged.

(3) Event log must be fired in place where the stats are being changed. for

example:

● setFeeTo function in JetswapFactory.sol

● setFeeToSetter function in JetswapFactory.sol

● initialize function in JetswapFactory.sol

Resolution: This issue is acknowledged.

Conclusion

We were given contract code. And we have used all possible tests based on

given objects as files. The contracts are written so systematically, that we did

not find any major issues. So it is good to go for the production.

Since possible test cases can be unlimited for such extensive smart contract

protocol, so we provide no such guarantee of future outcomes. We have used

all the latest static tools and manual observations to cover maximum possible

test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with

static analysis tools. Smart Contract’s high level description of functionality

was presented in As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the

reviewed code.

Security state of the reviewed contract, based on extensive audit procedure

scope is “Well Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a

collaborative effort. The goals of our security audits are to improve the quality

of systems we review and aim for sufficient remediation to help protect users.

The following is the methodology we use in our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with

code logic, error handling, protocol and header parsing, cryptographic errors,

and random number generators. We also watch for areas where more

defensive programming could reduce the risk of future mistakes and speed

up future audits. Although our primary focus is on the in-scope code, we

examine dependency code and behavior when it is relevant to a particular

line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface

interaction, and whitebox penetration testing. We look at the project's web site

to get a high level understanding of what functionality the software under

review provides. We then meet with the developers to gain an appreciation of

their vision of the software. We install and use the relevant software,

exploring the user interactions and roles. While we do this, we brainstorm

threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code

dependencies, skim open issue tickets, and generally investigate details other

than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a

potential issue is discovered, we immediately create an Issue entry for it in

this document, even though we have not yet verified the feasibility and impact

of the issue. This process is conservative because we document our

suspicions early even if they are later shown to not represent exploitable

vulnerabilities. We generally follow a process of first documenting the

suspicion with unresolved questions, then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most

tentative, and we strive to provide test code, log captures, or screenshots

demonstrating our confirmation. After this we analyze the feasibility of an

attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and

finally we suggest the requirements for remediation engineering for future

releases. The mitigation and remediation recommendations should be

scrutinized by the developers and deployment engineers, and successful

mitigation and remediation is an ongoing collaborative process after we

deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the
best industry practices at the date of this report, in relation to: cybersecurity
vulnerabilities and issues in smart contract source code, the details of which
are disclosed in this report, (Source Code); the Source Code compilation,
deployment and functionality (performing the intended functions).

Due to the fact that the total number of test cases are unlimited, so the audit
makes no statements or warranties on security of the code. It also cannot be
considered as a sufficient assessment regarding the utility and safety of the
code, bugfree status or any other statements of the contract. While we have
done our best in conducting the analysis and producing this report, it is
important to note that you should not rely on this report only. We also suggest
to conduct a bug bounty program to confirm the high level of security of this
smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have their own vulnerabilities that can lead to hacks. Thus, the
audit can’t guarantee explicit security of the audited smart contracts.

